| ■ 영문 제목 : AI in Clinical Trials Market by Function (Patient Recruitment, Site Optimization, Data Management, Quality, Regulatory), Phase (I, II, III), Indication (Cancer, CNS, CVS), Tool, End-User (Pharma/Biotech, CRO, Hospitals) & Region - Global Forecast to 2030 | |
| ■ 상품코드 : HIT 9229 ■ 조사/발행회사 : MarketsandMarkets ■ 발행일 : 2024년 12월 ■ 페이지수 : 373 ■ 작성언어 : 영문 ■ 보고서 형태 : PDF ■ 납품 방식 : Email (주문후 24시간내 납품) ■ 조사대상 지역 : 글로벌 ■ 산업 분야 : 의료용 IT | |
| Single User | USD4,950 ⇒환산₩6,930,000 | 견적의뢰/주문/질문 |
| Multi User (Five User) | USD6,650 ⇒환산₩9,310,000 | 견적의뢰/주문/질문 |
| Corporate License | USD8,150 ⇒환산₩11,410,000 | 견적의뢰/구입/질문 |
|
※가격옵션 설명 - 납기는 즉일~2일소요됩니다. 3일이상 소요되는 경우는 별도표기 또는 연락드립니다. - 지불방법은 계좌이체/무통장입금 또는 카드결제입니다. |
“임상시험 분야 AI 시장은 2024년 13.5억 달러에서 2030년에는 27.4억 달러에 이를 것으로 예상되며, 2024년부터 2030년까지 연평균 성장률은 12.4%” 유효성 향상, 더 짧은 기간에 환자 모집, 데이터의 정확한 분석에 대한 수요 증가가 임상시험에서 AI 시장을 부추기는 주요 요인이 되고 있습니다. AI를 활용한 솔루션은 임상시험의 다양한 단계에서 기간 단축을 지원하고 예측 모델링과 참여 전략을 통해 환자 유지 수준을 향상시킵니다. 또한 웨어러블과 EMR 시스템의 사용이 증가하면서 코스의 모든 단계에서 모니터링이 용이해져 임상시험에서 AI의 적용이 강화되고 있습니다. 그렇지만 규제 기준, 법적으로도 지나치게 높은 도입 비용, 데이터 유출의 우려 등 몇 가지 장애물이 임상시험에서 AI의 본격적인 이용을 방해하는 제약으로 작용하고 있습니다.
“임상시험 AI 시장에서 예측 기간 동안 적응증별 성장률이 가장 높았던 것은 감염증”
AI 기술을 응용하여 임상시험을 실시하는 분야에서는 모든 적응증 중 감염증이 가장 빠른 성장을 이룰 것으로 생각됩니다. 팬데믹(세계적 대유행)과 같은 질병의 유행에 대해 보다 신속하고 우수한 해결책을 요구하는 세계적인 요구에 따라 이러한 발전은 매우 빠릅니다. AI는 환자 등록 과정을 신속하게 하고 예측을 강화하며 임상시험을 보다 적절하게 구성합니다. 감염증 대책 캠페인의 증가로 인해 첨단 기술, 특히 AI의 이용이 크게 증가하고 있습니다.
“최종 사용자별로 보면 제약 및 바이오 제약 기업이 2023년에 최대 시장 점유율을 차지할 것”
최종 사용자별로 보면 임상시험 분야 AI 시장은 제약 및 바이오 제약 기업, 연구 기관, 의료 서비스 제공자, 위탁 연구 기관, 의료기기 제조업체로 나뉩니다. 시장 점유율의 대부분은 제약 및 바이오 제약 기업이 차지하고 있습니다. 이는 연구개발비가 매우 크기 때문이며, 그 결과 더 신속한 의약품 개발 프로세스, 더 우수한 임상시험 설계, 환자 모집 강화를 위한 AI의 적용이 기업에 증가합니다. 이러한 AI 시스템은 대규모 데이터 세트의 복잡한 분석을 지원하고, 시장 출시를 가속화하며, 제약 분야의 경쟁에서 살아남기 위해 필수적인 계속 증가하는 비용을 억제하기 위해 이러한 기업을 위해 설계되었습니다.
“아시아 태평양 지역은 예측 기간 동안 가장 높은 CAGR을 기록할 것으로 추정”
임상시험 분야 AI 시장은 지리적으로 북미, 유럽, 아시아 태평양 지역, 중남미, 중동 및 아프리카로 구분됩니다. 아시아 태평양 지역의 임상시험 분야 AI 시장은 예측 기간 동안 가장 높은 CAGR을 기록할 것으로 예상됩니다. 아시아 태평양 지역은 빠르게 발전하는 의료 인프라, AI 기술의 진보, 임상연구의 확대를 통해 혜택을 받고 있습니다. 중국, 인도, 일본 등의 국가들은 대규모의 다양한 집단을 용이하게 하고 임상시험을 보다 효율적으로 조직하기 위해 의료 분야에서 AI의 사용을 장려하고 있습니다. 또한 유리한 정부 정책, 개발업무수탁기관(CRO)의 증가, 서구지역에 비해 저렴한 운영 비용으로 인해 많은 다국적 제약기업들이 이 지역에서 AI 임상시험에 투자하는 것을 사업으로 하고 있습니다.
공급측 1차 면접 기업 유형별, 호칭별, 지역별 내역:
– 기업 유형별 티어 1(40%), 티어 2(35%), 티어 3(25)
– 직책별 관리직(40%), 이사(35%), 기타(25)
– 지역별 북미(40%), 유럽(30%), 아시아 태평양(20%), 중남미(5%), 중동 아프리카(5%)
보고서 게재 기업 목록
o IQVIA Inc. (미국)
o Saama. (미국)
o Dassault Systèmes (Medidata) (프랑스)
o Phesi (미국)
o PathAI, Inc. (미국)
o Unlearn.ai, Inc. (미국)
o Deep6.ai (미국)
o Microsoft (미국)
o IBM (미국)
o NVIDIA Corporation (미국)
o Insilico Medicine (미국)
o ConcertAI. (미국)
o AiCure. (미국)
o Median Technologies. (프랑스)
o Lantern Pharma Inc. (미국)
o Citeline, a Norstella Company (미국)
o Tempus AI, Inc. (미국)
o TriNetX, LLC (미국)
o ReviveMed Inc. (미국)
o Euretos. (미국)
o VeriSIM Life. (미국)
o Triomics (미국)
o Ardigen (폴란드)
o QuantHealth Ltd. (미국)
o DEEP GENOMICS. (캐나다)
조사 범위
이 조사 보고서는 임상시험 분야 AI 시장을 제공(엔드투엔드 솔루션, 틈새 솔루션, 기술 제공업체 및 서비스), 기능(환자 모집, 시험 설계 최적화, 데이터 관리 및 품질 관리, 부작용 예측 및 탐지, 약물 재활용, 규제 준수), 단계(단계 I, 단계 II, 단계 III, 단계 IV), 전개 형태(클라우드 기반 솔루션, 온프레미스 솔루션), 적응증(종양학, 신경질환 심혈관 질환, 대사성 질환, 감염성 질환, 면역 질환, 기타(소화기, 호흡기, 생식기), 기술(기계 학습, NLP, 컴퓨터 비전, 로봇을 통한 프로세스 자동화, 기타), 응용 프로그램(바이오마커, 세포 및 유전자 치료, 재생 의료, 의료 기기 및 진단), 최종 사용자(제약 및 생명공학 기업, 연구 기관 및 연구소, 의료 제공자, 의약품 개발 업무 수탁 기관(CRO), 의료 기기 제조업체), 지역. 임상시험 AI 시장의 성장에 영향을 미치는 촉진 요인, 저해 요인, 과제, 기회 등 주요 요인에 대한 상세 정보를 망라하고 있습니다. 주요 업계 플레이어를 철저히 분석하여 사업 개요, 제품 및 임상시험에서 AI 시장의 인수, 제휴, 파트너십, 합병, 제품/서비스 출시 및 강화, 승인 등 주요 전략에 대한 통찰을 제공합니다. 임상시험에서 AI 시장의 생태계에 있는 향후 신흥 기업의 경쟁 분석도 본 보고서에서 다룹니다.
보고서 구매 이유
본 보고서는 임상시험에서 AI 시장 전체 및 하위 세그먼트의 수익 수에 대한 가장 근접한 근사치에 대한 정보를 제공함으로써 본 시장의 시장 리더/신규 진입자를 지원합니다. 본 보고서는 이해관계자가 경쟁 상황을 이해하고 더 깊은 통찰력을 얻음으로써 자사의 비즈니스를 더 잘 포지셔닝하고 적절한 시장 진입 전략을 계획하는 데 도움이 됩니다. 또한 본 보고서는 관계자가 시장의 맥박을 이해하고 주요 시장 촉진 요인, 저해 요인, 과제, 기회에 대한 정보를 제공하는 데 도움이 됩니다.
본 보고서는 다음 사항에 대한 통찰력을 제공합니다.
임상시험에서 AI 시장의 성장에 영향을 미치는 주요 추진 요인(보다 신속하고 효율적인 의약품 개발에 대한 수요 증가), 억제 요인(AI 솔루션 도입에 따른 높은 비용), 기회(정밀의료에 대한 관심 증가), 과제(기존 임상시험의 틀에 AI를 통합하는 복잡성) 분석.
– 제품 개발/혁신: 임상시험에서 AI 시장의 향후 기술, 연구개발 활동, 신제품 및 서비스 출시와 관련한 심층적인 통찰력.
– 시장 개발: 유리한 시장에 대한 포괄적인 정보 – 이 보고서는 다양한 지역의 임상시험에서 AI 시장을 분석합니다.
– 시장 다각화: 임상시험 AI 시장의 신제품 및 서비스, 미개척 지역, 최근 개발, 투자에 대한 자세한 정보.
– 경쟁사 평가: IQVIA Inc. (미국), Dassault Systèmes (Medidata) (프랑스), Tempus AI, Inc. (미국), Insilico Medicine (미국), ConcertAI. (미국), AiCure. (미국) PathAI, Inc. (미국) 등.
1 서론 11.3 자연어 처리 159 14 임상시험 분야 AI 시장(지역별) 176 1.1 STUDY OBJECTIVES 33 1.2 MARKET DEFINITION 33 1.3 STUDY SCOPE 34 1.3.1 SEGMENTS CONSIDERED 34 1.3.2 INCLUSIONS & EXCLUSIONS 35 1.3.3 YEARS CONSIDERED 37 1.3.4 CURRENCY CONSIDERED 37 1.4 STAKEHOLDERS 37 2 RESEARCH METHODOLOGY 39 2.1 RESEARCH DATA 39 2.1.1 SECONDARY DATA 40 2.1.1.1 Key sources for secondary data 40 2.1.1.2 Key data from secondary sources 41 2.1.2 PRIMARY DATA 41 2.1.2.1 Key sources for primary data 42 2.1.2.2 Objectives of primary research 42 2.1.2.3 Key data from primary sources 43 2.1.2.4 Key insights from primary experts 44 2.2 MARKET SIZE ESTIMATION 45 2.2.1 SUPPLY-SIDE REVENUE SHARE ANALYSIS 45 2.2.2 PARENT MARKET APPROACH 45 2.2.3 COMPANY PRESENTATIONS AND PRIMARY INTERVIEWS 45 2.2.4 MARKET SEGMENT ASSESSMENT 46 2.2.5 GEOGRAPHIC MARKET ASSESSMENT 47 2.3 DATA TRIANGULATION 49 2.4 MARKET SHARE ESTIMATION 50 2.5 STUDY ASSUMPTIONS 50 2.6 RESEARCH LIMITATIONS 50 2.6.1 METHODOLOGY-RELATED LIMITATIONS 50 2.6.2 SCOPE-RELATED LIMITATIONS 50 2.7 RISK ASSESSMENT 51 3 EXECUTIVE SUMMARY 52 4 PREMIUM INSIGHTS 59 4.1 AI IN CLINICAL TRIALS MARKET OVERVIEW 59 4.2 AI IN CLINICAL TRIALS MARKET, BY REGION 60 4.3 NORTH AMERICA: AI IN CLINICAL TRIALS MARKET, BY END USER AND COUNTRY 61 4.4 AI IN CLINICAL TRIALS MARKET: GEOGRAPHICAL SNAPSHOT 62 4.5 AI IN CLINICAL TRIALS MARKET: DEVELOPED VS. EMERGING MARKETS 63 5 MARKET OVERVIEW 64 5.1 INTRODUCTION 64 5.2 MARKET DYNAMICS 64 5.3 MARKET DYNAMICS 65 5.3.1 DRIVERS 65 5.3.1.1 Increasing demand for personalized treatments 65 5.3.1.2 Support for decentralized and global trials 67 5.3.1.3 Regulatory compliance and ethical considerations 67 5.3.1.4 Automated document review for better regulatory compliance 68 5.3.1.5 Focus on real-time data management and analysis 68 5.3.2 RESTRAINTS 69 5.3.2.1 Data privacy and security concerns 69 5.3.2.2 Integration challenges with legacy systems and resistance from healthcare professionals 70 5.3.2.3 High implementation cost and need for skilled AI professionals 71 5.3.3 OPPORTUNITIES 71 5.3.3.1 Use of predictive analytics in clinical trials 71 5.3.3.2 Development of virtual control arms for faster trials 72 5.3.3.3 Integrating natural language processing into clinical trials for data extraction 73 5.3.4 CHALLENGES 73 5.3.4.1 Addressing algorithm bias and fairness 73 5.3.4.2 Insufficient technical expertise in AI-based solutions 74 5.4 INDUSTRY TRENDS 74 5.4.1 INCREASING ADOPTION OF DECENTRALIZED CLINICAL TRIALS 74 5.4.2 RISING FOCUS ON AI-POWERED PATIENT RECRUITMENT AND RETENTION 74 5.5 ECOSYSTEM ANALYSIS 75 5.6 CASE STUDY ANALYSIS 75 5.6.1 AI-POWERED APPROACH TO OVERCOME CHALLENGES IN IPF DRUG DEVELOPMENT 75 5.6.2 REVOLUTIONIZING CLINICAL TRIAL ENROLLMENT WITH ADVANCED MATCHING NETWORKS 76 5.6.3 BREAKTHROUGH IN CANCER TREATMENT WITH FDA APPROVAL FOR PHASE 1 TRIALS 77 5.7 VALUE CHAIN ANALYSIS 77 5.8 PORTER'S FIVE FORCES ANALYSIS 79 5.8.1 BARGAINING POWER OF SUPPLIERS 80 5.8.2 BARGAINING POWER OF BUYERS 80 5.8.3 THREAT OF SUBSTITUTES 81 5.8.4 THREAT OF NEW ENTRANTS 81 5.8.5 INTENSITY OF COMPETITIVE RIVALRY 81 5.9 KEY STAKEHOLDERS & BUYING CRITERIA 82 5.9.1 KEY STAKEHOLDERS IN BUYING PROCESS 82 5.9.2 KEY BUYING CRITERIA 83 5.10 REGULATORY LANDSCAPE 83 5.10.1 REGULATORY BODIES, GOVERNMENT AGENCIES, AND OTHER ORGANIZATIONS 84 5.10.2 REGULATORY FRAMEWORK 84 5.11 PATENT ANALYSIS 87 5.11.1 PATENT PUBLICATION TRENDS FOR AI IN CLINICAL TRIALS 87 5.11.2 JURISDICTION AND TOP APPLICANT ANALYSIS 88 5.12 TECHNOLOGY ANALYSIS 90 5.12.1 KEY TECHNOLOGIES 90 5.12.1.1 Machine learning 90 5.12.1.2 Natural language processing 90 5.12.1.3 Computer vision 90 5.12.2 COMPLEMENTARY TECHNOLOGIES 90 5.12.2.1 Internet of things 90 5.12.2.2 Cloud computing 90 5.12.3 ADJACENT TECHNOLOGIES 91 5.12.3.1 Advanced genomics 91 5.13 PRICING ANALYSIS 91 5.13.1 INDICATIVE PRICE OF KEY AI SOFTWARE, BY KEY PLAYER, 2023 91 5.13.2 INDICATIVE PRICE TREND OF KEY AI SOFTWARE, BY REGION, 2022–2024 92 5.14 KEY CONFERENCES & EVENTS, 2024–2025 92 5.15 TRENDS AND DISRUPTIONS IMPACTING CUSTOMER’S BUSINESS 93 5.16 UNMET NEEDS AND END-USER EXPECTATIONS 94 5.16.1 UNMET NEEDS 94 5.16.2 END-USER EXPECTATIONS 95 5.17 INVESTMENT & FUNDING SCENARIO 95 5.18 IMPACT OF AI/GEN AI ON AI IN CLINICAL TRIALS MARKET 96 5.18.1 KEY USE CASES 97 5.18.2 IMPACT OF AI/GEN AI ON INTERCONNECTED AND ADJACENT ECOSYSTEMS 97 5.18.2.1 Case study 97 5.18.2.2 Clinical trials market 98 5.18.2.3 eClinical solutions market 98 5.18.2.4 AI in biotechnology market 99 5.18.3 USERS READINESS AND IMPACT ASSESSMENT 99 5.18.3.1 User readiness 99 5.18.3.1.1 Pharmaceutical & biopharmaceutical companies 99 5.18.3.1.2 Contract research organizations 99 5.18.3.2 Impact assessment 99 5.18.3.2.1 User A: Healthcare providers 99 5.18.3.2.2 User B: Research institutes & laboratories 100 6 AI IN CLINICAL TRIALS MARKET, BY OFFERING 101 6.1 INTRODUCTION 102 6.2 END-TO-END SOLUTIONS 102 6.2.1 COST-EFFECTIVENESS, IMPROVED EFFICIENCY, AND REDUCED HUMAN ERRORS TO DRIVE ADOPTION IN CLINICAL TRIALS 102 6.3 NICHE SOLUTIONS 103 6.3.1 HIGH FAILURE RATES OF CLINICAL TRIALS AND NEED FOR STREAMLINED PROCESSES TO FUEL MARKET GROWTH 103 6.4 TECHNOLOGY PROVIDERS 104 6.4.1 NEED TO ACCELERATE DRUG DEVELOPMENT PROCESSES AND HIGH DEMAND FOR PERSONALIZED MEDICINES TO AID MARKET GROWTH 104 6.5 SERVICES 105 6.5.1 CONSULTING SERVICES 106 6.5.1.1 Consulting services to optimize trial design, enhance patient recruitment, and improve data management 106 6.5.2 IMPLEMENTATION SERVICES & ONGOING IT SUPPORT 107 6.5.2.1 Need for smooth integration and optimization of AI technologies to boost segment growth 107 6.5.3 TRAINING & EDUCATION SERVICES 108 6.5.3.1 Need for skilled talent for managing complex AI systems to augment segment growth 108 6.5.4 POST-SALES & MAINTENANCE SERVICES 109 6.5.4.1 Development of complex AI systems and need for continuous improvement in AI algorithms to drive segment growth 109 7 AI IN CLINICAL TRIALS MARKET, BY FUNCTION 111 7.1 INTRODUCTION 112 7.2 PATIENT RECRUITMENT 112 7.2.1 PATIENT IDENTIFICATION & SCREENING 114 7.2.1.1 Reduced patient screening time and better accuracy than human clinicians to drive market 114 7.2.2 PATIENT ENGAGEMENT & RETENTION 115 7.2.2.1 Better personalized communication and support for clinical trials to propel market growth 115 7.2.3 SITE OPTIMIZATION 116 7.2.3.1 Cost-effective and improved participant recruitment and retention to fuel segment growth 116 7.3 TRIAL DESIGN OPTIMIZATION 117 7.3.1 WORKFLOW MANAGEMENT 118 7.3.1.1 Effective real-time tracking, automated reporting, and milestone monitoring to spur segment growth 118 7.3.2 PREDICTIVE MODELING 119 7.3.2.1 Ability to optimize trial design, predict risks, and identify effective treatment protocols to drive segment 119 7.3.3 RISK MANAGEMENT 120 7.3.3.1 AI-driven solutions for risk prediction to improve patient safety and data integrity 120 7.4 DATA MANAGEMENT & QUALITY CONTROL 121 7.4.1 FOCUS ON MAINTAINING DATA ACCURACY AND INTEGRITY IN CLINICAL TRIALS TO BOOST ADOPTION 121 7.5 ADVERSE EVENT PREDICTION & DETECTION 122 7.5.1 MITIGATING RISKS AND HARNESSING AI-DRIVEN ADVERSE EVENT DETECTION TO SPUR MARKET GROWTH 122 7.6 DRUG REPURPOSING 123 7.6.1 DRUG REPURPOSING TO VALIDATE HYPOTHESES AGAINST REAL-TIME PATIENT DATA IN RARE DISEASES 123 7.7 REGULATORY COMPLIANCE 124 7.7.1 COMPLEXITY OF GLOBAL REGULATORY ENVIRONMENTS AND NEED FOR FASTER DRUG APPROVALS TO AID MARKET GROWTH 124 8 AI IN CLINICAL TRIALS MARKET, BY PHASE 126 8.1 INTRODUCTION 127 8.2 PHASE I CLINICAL TRIALS 127 8.2.1 FASTER PATIENT IDENTIFICATION AND RECRUITMENT TO PROPEL ADOPTION OF AI 127 8.3 PHASE II CLINICAL TRIALS 128 8.3.1 NEED FOR ACCURATE PREDICTION OF OPTIMAL DOSAGE IN PHASE II TRIALS TO BOOST USE OF AI 128 8.4 PHASE III CLINICAL TRIALS 129 8.4.1 NEED TO CHECK DRUG EFFICACY AND MONITOR ADVERSE REACTIONS TO AUGMENT MARKET GROWTH 129 8.5 PHASE IV CLINICAL TRIALS 130 8.5.1 AI TO ASSESS SAFETY AND LONG-TERM OUTCOMES OF TREATMENT IN LARGER PATIENT POPULATION UNDER PHASE IV TRIALS 130 9 AI IN CLINICAL TRIALS MARKET, BY DEPLOYMENT MODE 132 9.1 INTRODUCTION 133 9.2 CLOUD-BASED SOLUTIONS 133 9.2.1 PUBLIC CLOUD-BASED SOLUTIONS 135 9.2.1.1 Reduced need for costly on-premises infrastructure and better regulatory compliance to fuel adoption 135 9.2.2 PRIVATE CLOUD-BASED SOLUTIONS 136 9.2.2.1 Better security and personalization for sensitive data to propel segment growth 136 9.2.3 MULTI CLOUD-BASED SOLUTIONS 137 9.2.3.1 Use of advanced predictive modeling for patient recruitment and site performance optimization to drive market 137 9.2.4 HYBRID CLOUD-BASED SOLUTIONS 138 9.2.4.1 Better flexibility in data management to reduce resource requirements in clinical trials 138 9.3 ON-PREMISES SOLUTIONS 139 9.3.1 ON-PREMISES SOLUTIONS TO OFFER SECURE ENVIRONMENT FOR MANAGING SENSITIVE DATA AND RUNNING COMPLEX ALGORITHMS 139 10 AI IN CLINICAL TRIALS MARKET, BY INDICATION 140 10.1 INTRODUCTION 141 10.2 ONCOLOGY 141 10.2.1 HIGH PREVALENCE OF CANCER AND SHORTAGE OF EFFECTIVE DRUGS TO DRIVE SEGMENT GROWTH 141 10.3 NEUROLOGICAL DISEASES 142 10.3.1 COMPLEXITY OF NEUROGENERATIVE DISORDERS AND SHORTAGE OF DRUGS FOR PARKINSON’S DISEASE TO SPUR MARKET GROWTH 142 10.4 CARDIOVASCULAR DISEASES 144 10.4.1 RISING DEMAND FOR NOVEL CARDIOVASCULAR DRUGS TO DRIVE SEGMENT 144 10.5 METABOLIC DISEASES 145 10.5.1 RISING PREVALENCE OF DIABETES AND OBESITY TO SUPPORT MARKET GROWTH 145 10.6 INFECTIOUS DISEASES 146 10.6.1 RECENT EPIDEMIC OUTBREAKS TO BOOST DRUG DISCOVERY ACTIVITIES FOR INFECTIOUS DISEASES 146 10.7 IMMUNOLOGY DISEASES 147 10.7.1 GROWING DRUG PIPELINE FOR IMMUNOLOGICAL DISORDERS TO FAVOR MARKET GROWTH 147 10.8 OTHER DISEASES 148 11 AI IN CLINICAL TRIALS MARKET, BY TECHNOLOGY 150 11.1 INTRODUCTION 151 11.2 MACHINE LEARNING 151 11.2.1 DEEP LEARNING 153 11.2.1.1 Reduced chance of errors in clinical trials and enhanced data consistency to augment segment growth 153 11.2.2 SUPERVISED LEARNING 155 11.2.2.1 Supervised learning to focus on effective patient stratification, disease progression prediction, and biomarker identification 155 11.2.3 UNSUPERVISED LEARNING 156 11.2.3.1 Effective handling of complex and unstructured datasets to aid adoption in trial design and execution 156 11.2.4 REINFORCEMENT LEARNING 157 11.2.4.1 Dynamic learning capabilities to aid adoption in personalized medicine and precision oncology 157 11.2.5 OTHER MACHINE LEARNING TECHNOLOGIES 158 11.3 NATURAL LANGUAGE PROCESSING 159 11.3.1 ABUNDANCE OF UNSTRUCTURED DATA IN CLINICAL RESEARCH TO PROPEL GROWTH IN TRIAL MANAGEMENT 159 11.4 COMPUTER VISION 160 11.4.1 RISING NEED FOR REPRODUCIBLE ANALYSIS IN CLINICAL ENDPOINTS TO DRIVE MARKET 160 11.5 ROBOTIC PROCESS AUTOMATION 161 11.5.1 ROBOTIC PROCESS AUTOMATION TO ENHANCE OPERATIONAL EFFICIENCY BY AUTOMATING ADMINISTRATIVE WORKFLOWS 161 11.6 OTHER TECHNOLOGIES 162 12 AI IN CLINICAL TRIALS MARKET, BY APPLICATION 163 12.1 INTRODUCTION 164 12.2 BIOMARKERS 164 12.2.1 INCREASING INVESTMENTS IN AI-BASED INNOVATION TO AID DEVELOPMENT OF PERSONALIZED HEALTHCARE SOLUTIONS 164 12.3 CELL & GENE THERAPY 165 12.3.1 HIGH PREVALENCE OF GENETIC DISORDERS AND TECHNOLOGICAL ADVANCEMENTS IN CAR-T THERAPIES TO DRIVE GROWTH 165 12.4 REGENERATIVE MEDICINES 166 12.4.1 INCREASED NEED FOR PRECISE MONITORING AND ADVANCEMENTS IN STEM CELL RESEARCH TO SPUR MARKET GROWTH 166 12.5 MEDICAL DEVICES & DIAGNOSTICS 167 12.5.1 NEED FOR REAL-TIME MONITORING AND REMOTE DATA ACQUISITION DURING TRIALS TO ACCELERATE MARKET GROWTH 167 13 AI IN CLINICAL TRIALS MARKET, BY END USER 169 13.1 INTRODUCTION 170 13.2 PHARMACEUTICAL & BIOPHARMACEUTICAL COMPANIES 170 13.2.1 HIGH R&D INVESTMENTS AND INCREASED REGULATORY COMPLIANCE TO AUGMENT MARKET GROWTH 170 13.3 RESEARCH INSTITUTES & LABORATORIES 171 13.3.1 INCREASED GOVERNMENT GRANTS AND COLLABORATIONS WITH PHARMACEUTICAL COMPANIES TO SUPPORT MARKET GROWTH 171 13.4 HEALTHCARE PROVIDERS 172 13.4.1 ADVANCEMENTS IN PRECISION MEDICINES AND NEED FOR REAL-WORLD EVIDENCE IN CLINICAL RESEARCH TO DRIVE MARKET 172 13.5 CONTRACT RESEARCH ORGANIZATIONS 173 13.5.1 RISING DEMAND FOR OUTSOURCING CLINICAL TRIAL ACTIVITIES BY PHARMACEUTICAL COMPANIES TO AID MARKET GROWTH 173 13.6 MEDICAL DEVICE MANUFACTURERS 175 13.6.1 DEMAND FOR AI-DRIVEN DIAGNOSTICS AND MONITORING DEVICES FOR REMOTE CARE TO PROPEL MARKET GROWTH 175 14 AI IN CLINICAL TRIALS MARKET, BY REGION 176 14.1 INTRODUCTION 177 14.2 NORTH AMERICA 177 14.2.1 MACROECONOMIC OUTLOOK FOR NORTH AMERICA 178 14.2.2 US 183 14.2.2.1 US to dominate North American AI in clinical trials market during study period 183 14.2.3 CANADA 188 14.2.3.1 Rising need for data standardization and increasing health expenditure to support market growth 188 14.3 EUROPE 192 14.3.1 MACROECONOMIC OUTLOOK FOR EUROPE 192 14.3.2 UK 197 14.3.2.1 High R&D investment by government organizations to augment market growth 197 14.3.3 GERMANY 202 14.3.3.1 Increased focus on research activities and strategic developments by pharma & biotech companies to drive market 202 14.3.4 FRANCE 206 14.3.4.1 Strong government support and focus on domestic drug research to propel market growth 206 14.3.5 ITALY 211 14.3.5.1 Increased R&D investments from pharmaceutical companies and reduced time for drug approvals to fuel market growth 211 14.3.6 SPAIN 215 14.3.6.1 Increased technological investments by private organizations and integrated healthcare systems to spur market growth 215 14.3.7 REST OF EUROPE 219 14.4 ASIA PACIFIC 223 14.4.1 MACROECONOMIC OUTLOOK FOR ASIA PACIFIC 223 14.4.2 JAPAN 229 14.4.2.1 Well-established clinical trial infrastructure and advanced biomedical research to support market growth 229 14.4.3 CHINA 233 14.4.3.1 Low cost of clinical trials and availability of treatment-naïve population to propel market growth 233 14.4.4 INDIA 238 14.4.4.1 Favorable government policies and high R&D expenditure by Indian pharmaceutical companies to spur market growth 238 14.4.5 REST OF ASIA PACIFIC 242 14.5 LATIN AMERICA 246 14.5.1 MACROECONOMIC OUTLOOK FOR LATIN AMERICA 246 14.5.2 BRAZIL 251 14.5.2.1 Increasing governmental support for innovation and growing biotechnology sector to drive market 251 14.5.3 MEXICO 256 14.5.3.1 Strong technological and research capabilities in AI applications to fuel market growth 256 14.5.4 REST OF LATIN AMERICA 260 14.6 MIDDLE EAST & AFRICA 264 14.6.1 MACROECONOMIC OUTLOOK FOR MIDDLE EAST & AFRICA 265 14.6.2 GCC COUNTRIES 269 14.6.2.1 Technological innovations and focus on precision medicines to augment market growth 269 14.6.3 REST OF MIDDLE EAST & AFRICA 274 15 COMPETITIVE LANDSCAPE 279 15.1 INTRODUCTION 279 15.2 KEY PLAYER STRATEGY/RIGHT TO WIN 279 15.2.1 OVERVIEW OF STRATEGIES ADOPTED BY KEY PLAYERS IN AI IN CLINICAL TRIALS MARKET 280 15.3 REVENUE ANALYSIS, 2019–2023 281 15.4 MARKET SHARE ANALYSIS, 2023 282 15.4.1 RANKING OF KEY MARKET PLAYERS 284 15.5 COMPANY EVALUATION MATRIX: KEY PLAYERS, 2023 285 15.5.1 STARS 285 15.5.2 EMERGING LEADERS 285 15.5.3 PERVASIVE PLAYERS 285 15.5.4 PARTICIPANTS 285 15.5.5 COMPANY FOOTPRINT: KEY PLAYERS, 2023 287 15.5.5.1 Company footprint 287 15.5.5.2 Region footprint 288 15.5.5.3 Offering footprint 289 15.5.5.4 Function footprint 290 15.5.5.5 End-user footprint 291 15.6 COMPANY EVALUATION QUADRANT: STARTUP/SMES, 2023 292 15.6.1 PROGRESSIVE COMPANIES 292 15.6.2 RESPONSIVE COMPANIES 292 15.6.3 DYNAMIC COMPANIES 292 15.6.4 STARTING BLOCKS 292 15.6.5 COMPETITIVE BENCHMARKING: STARTUPS/SMES, 2023 294 15.7 COMPANY EVALUATION & FINANCIAL METRICS 296 15.8 BRAND/PRODUCT COMPARISON 297 15.9 COMPETITIVE SCENARIO 298 15.9.1 PRODUCT/SERVICE/SOLUTION LAUNCHES 298 15.9.2 DEALS 299 15.9.3 OTHER DEVELOPMENTS 300 16 COMPANY PROFILES 301 16.1 KEY PLAYERS 301 16.1.1 IQVIA INC. 301 16.1.1.1 Products/Services/Solutions offered 303 16.1.1.2 Recent developments 303 16.1.1.2.1 Solution launches 303 16.1.1.2.2 Deals 304 16.1.1.3 MnM view 304 16.1.1.3.1 Right to win 304 16.1.1.3.2 Strategic choices 305 16.1.1.3.3 Weaknesses & competitive threats 305 16.1.2 DASSAULT SYSTÈMES (MEDIDATA) 306 16.1.2.1 Business overview 306 16.1.2.2 Products/Services/Solutions offered 307 16.1.2.3 Recent developments 307 16.1.2.3.1 Solution launches 307 16.1.2.3.2 Deals 308 16.1.2.4 MnM view 308 16.1.2.4.1 Right to win 308 16.1.2.4.2 Strategic choices 308 16.1.2.4.3 Weaknesses & competitive threats 308 16.1.3 INSILICO MEDICINE 309 16.1.3.1 Business overview 309 16.1.3.2 Products/Services/Solutions offered 309 16.1.3.3 Recent developments 310 16.1.3.3.1 Other developments 310 16.1.3.4 MnM view 310 16.1.3.4.1 Right to win 310 16.1.3.4.2 Strategic choices 310 16.1.3.4.3 Weaknesses & competitive threats 311 16.1.4 TEMPUS AI, INC. 312 16.1.4.1 Business overview 312 16.1.4.2 Products/Services/Solutions offered 312 16.1.4.3 Recent developments 313 16.1.4.3.1 Solution launches 313 16.1.4.3.2 Deals 313 16.1.4.3.3 Other developments 315 16.1.4.4 MnM view 315 16.1.4.4.1 Right to win 315 16.1.4.4.2 Strategic choices 315 16.1.4.4.3 Weaknesses & competitive threats 315 16.1.5 NVIDIA CORPORATION 316 16.1.5.1 Business overview 316 16.1.5.2 Products/Services/Solutions offered 317 16.1.5.3 Recent developments 318 16.1.5.3.1 Product and service launches 318 16.1.5.3.2 Deals 319 16.1.5.4 MnM view 321 16.1.5.4.1 Right to win 321 16.1.5.4.2 Strategic choices 321 16.1.5.4.3 Weaknesses & competitive threats 321 16.1.6 SAAMA 322 16.1.6.1 Business overview 322 16.1.6.2 Products/Services/Solutions offered 322 16.1.6.3 Recent developments 323 16.1.6.3.1 Solution launches 323 16.1.6.3.2 Deals 324 16.1.7 PHESI 325 16.1.7.1 Business overview 325 16.1.7.2 Products/Services/Solutions offered 325 16.1.7.3 Recent developments 326 16.1.7.3.1 Solution launches 326 16.1.7.3.2 Deals 327 16.1.8 PATHAI, INC. 328 16.1.8.1 Business overview 328 16.1.8.2 Products/Services/Solutions offered 328 16.1.9 UNLEARN.AI, INC. 329 16.1.9.1 Business overview 329 16.1.9.2 Products/Services/Solutions offered 329 16.1.9.3 Recent developments 331 16.1.9.3.1 Solution launches 331 16.1.9.3.2 Deals 331 16.1.9.3.3 Other developments 332 16.1.10 DEEP6.AI 333 16.1.10.1 Business overview 333 16.1.10.2 Products/Services/Solutions offered 333 16.1.10.3 Recent developments 334 16.1.10.3.1 Solution launch 334 16.1.10.3.2 Deals 334 16.1.11 MICROSOFT 335 16.1.11.1 Business overview 335 16.1.11.2 Products/Services/Solutions offered 337 16.1.11.3 Recent developments 337 16.1.12 IBM 340 16.1.12.1 Business overview 340 16.1.12.2 Products/Services/Solutions offered 341 16.1.12.3 Recent developments 342 16.1.12.3.1 Deals 342 16.1.13 CONCERTAI 343 16.1.13.1 Business overview 343 16.1.13.2 Products/Services/Solutions offered 343 16.1.13.3 Recent developments 344 16.1.13.3.1 Solution launches 344 16.1.13.3.2 Deals 344 16.1.13.3.3 Other developments 345 16.1.14 AICURE 346 16.1.14.1 Business overview 346 16.1.14.2 Products/Services/Solutions offered 346 16.1.14.3 Recent developments 347 16.1.14.3.1 Service launches 347 16.1.14.3.2 Deals 347 16.1.15 MEDIAN TECHNOLOGIES 349 16.1.15.1 Business overview 349 16.1.15.2 Products/Services/Solutions offered 350 16.1.16 LANTERN PHARMA INC. 351 16.1.16.1 Business overview 351 16.1.16.2 Products/Services/Solutions offered 351 16.1.16.3 Recent developments 352 16.1.16.3.1 Deals 352 16.1.17 CITELINE, A NORSTELLA COMPANY 353 16.1.17.1 Business overview 353 16.1.17.2 Products/Services/Solutions offered 353 16.1.17.3 Recent developments 354 16.1.17.3.1 Solution launches 354 16.1.17.3.2 Deals 354 16.1.18 TRINETX, LLC 355 16.1.18.1 Business overview 355 16.1.18.2 Products/Services/Solutions offered 355 16.1.18.3 Recent developments 356 16.1.18.3.1 Deals 356 16.2 OTHER PLAYERS 357 16.2.1 REVIVEMED INC. 357 16.2.2 EURETOS 358 16.2.3 VERISIM LIFE 359 16.2.4 TRIOMICS 359 16.2.5 ARDIGEN 360 16.2.6 QUANTHEALTH LTD. 361 16.2.7 DEEP GENOMICS 362 17 APPENDIX 363 17.1 DISCUSSION GUIDE 363 17.2 KNOWLEDGESTORE: MARKETSANDMARKETS’ SUBSCRIPTION PORTAL 369 17.3 CUSTOMIZATION OPTIONS 371 17.4 RELATED REPORTS 371 17.5 AUTHOR DETAILS 372 |

| ※본 조사보고서 [세계의 임상시험 분야 AI 시장 (~2030년) : 기능별 (환자 모집, 시설 최적화, 데이터 관리, 품질, 규제), 단계별 (I, II, III), 질환별 (암, CNS, CVS), 툴별, 최종 사용자별 (제약/바이오테크놀로지, CRO, 병원), 지역별] (코드 : HIT 9229) 판매에 관한 면책사항을 반드시 확인하세요. |
| ※본 조사보고서 [세계의 임상시험 분야 AI 시장 (~2030년) : 기능별 (환자 모집, 시설 최적화, 데이터 관리, 품질, 규제), 단계별 (I, II, III), 질환별 (암, CNS, CVS), 툴별, 최종 사용자별 (제약/바이오테크놀로지, CRO, 병원), 지역별] 에 대해서 E메일 문의는 여기를 클릭하세요. |
※당 사이트에 없는 보고서도 취급 가능한 경우가 많으니 문의 주세요!
